Moving Higgs
Tilman Plehn

Decays to bottoms

tTH production

Higgs in cascade

Analysis error

Higgs operato

Higgs couplings

Higgs nypotneses

Higgs@LHC — still a moving target Competely biases pseudo-overview

Tilman Plehn

Universität Heidelberg

Brookhaven Forum, 5/2010

Moving Higgs
Tilman Plehn

Decays to bottoms

tīU production

ttH production

Analysis errors

Analysis errors

Higgs coupling

Higgs decays to bottoms

- gluon-fusion: killed by QCD background $\,$ [CMS: S/B \sim 1/80]

- WBF H: no trigger, killed by QCD backgrounds [WH, γH might work]

VH: killed by low rate and NLO background

- $t\bar{t}H$: killed by combinatorics etc

Tilman Plehn

Decays to bottoms

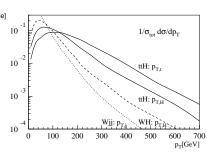
 $t\bar{t}H$ production

. ..95- ... -----

Analysis errors

Higgs coupling

I Come le made e


Higgs decays to bottoms

 $H \rightarrow b\bar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [CMS: $S/B \sim 1/80$]
- WBF H: no trigger, killed by QCD backgrounds [WH, \(\gamma H\) might work]
- VH: killed by low rate and NLO background
- $-t\bar{t}H$: killed by combinatorics etc

Changing everything [Butterworth, Davison, Rubin, Salam; Seymour...]

- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: large m_{bb} and small R_{bb} , so boosted Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T < 1$
- $-q\bar{q} \rightarrow V_{\ell}H_{b}$ viable [bbV notorious but possible]

Tilman Plehn

Decays to bottoms

tTH production

tti production

Analysis errors

Allalysis ellois

...

riggs couplings

Higgs hypothes

Higgs decays to bottoms

$H ightarrow b ar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [CMS: $S/B \sim 1/80$]
- WBF H: no trigger, killed by QCD backgrounds [WH, ¬H might work]
- VH: killed by low rate and NLO background
- $t\bar{t}H$: killed by combinatorics etc

Changing everything [Butterworth, Davison, Rubin, Salam; Seymour...]

- S: large m_{bb} , boost-dependent R_{bb}
 - B: large m_{bb} only for large R_{bb}
 - S/B: large m_{bb} and small R_{bb} , so boosted Higgs
- fat Higgs jet $R_{bb} \sim 2m_H/p_T < 1$
- $-q\bar{q} \rightarrow V_\ell H_b$ viable [bbV notorious but possible]
- ⇒ non-trivial challenge to jet algorthms

	$\sigma_{\mathcal{S}}/fb$	σ_B /fb	S/\sqrt{B}_{30}
C/A, R = 1.2, MD-F	0.57	0.51	4.4
$k_{\perp}, R = 1.0, y_{\text{cut}}$	0.19	0.74	1.2
SISCone, $R = 0.8$	0.49	1.33	2.3

Tilman Plehn

Decays to bottoms

ttH production

ttri production

Analysis errors

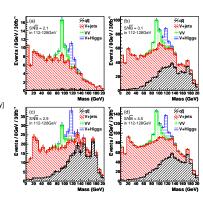
Analysis errors

...

Higgs coupling

riiggs coupiirig

Higgs hypothes


Higgs decays to bottoms

 $H \rightarrow b\bar{b}$ as of 2007 [2/3 of all Higgses at 120 GeV]

- gluon-fusion: killed by QCD background [CMS: $S/B \sim 1/80$]
- WBF H: no trigger, killed by QCD backgrounds [WH, \(\gamma\)H might work]
- VH: killed by low rate and NLO background
- $t\bar{t}H$: killed by combinatorics etc

VH production

- combined channels $V \to \ell\ell, \nu\nu, \ell\nu$
- Z peak as sanity check
- confirmed to 20% [Piquadio] subjet b tag excellent [70%/1%] charm rejection challenging $m_H \pm 8$ GeV tough
- improvements possible [Soper, Spannowsky]
- ⇒ crucial for Higgs sector studies

Tilman Plehn

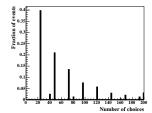
$t\bar{t}H$ production

Higgs in cascado

Analysis errors

Arialysis error

Higgs coupling

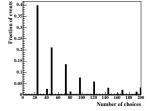

Higgs coupling

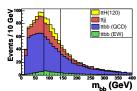
Higgs hypothese

Associated top-Higgs production

Long death of $t\bar{t}H, H o b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t \bar{t} b \bar{b}, t \bar{t} j j$ [now to NLO]
- no chance:
 - 1– combinatorics: m_{bb} from $pp o 4b_{tag}$ 2 $j \; \ell \nu$

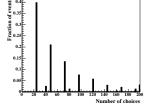

Tilman Plehn

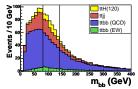

ttH production

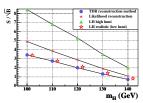
Associated top-Higgs production

Long death of $t\bar{t}H, H \to b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$ reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow \bar{b}ii$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [now to NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
 - 2- kinematics: peak-on-peak


Tilman Plehn


$t\bar{t}H$ production


Associated top-Higgs production

Long death of $t\bar{t}H, H \to b\bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$ reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}$, $t\bar{t}jj$ [now to NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
 - 2- kinematics: peak-on-peak
 - 3- systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

Tilman Plehn

Decays to bottoms

$t\bar{t}H$ production

Higgs in casca

Analysis errors

Higgs coupling

...99+ ----

Til.... Dist

Associated top-Higgs production

Long death of $t \bar t H, H o b \bar b$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$
 - reconstruction and rate: $\bar{t} \rightarrow \bar{b}W^- \rightarrow \bar{b}jj$
- continuum background $t \bar{t} b \bar{b}, t \bar{t} j j$ [now to NLO]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

New analysis

- tagged (boosted) top and Higgs trigger on lepton
- add'l continuum b tag [remove 'Higgs' as $t_{\ell} \rightarrow b$ plus QCD]
- side bin in continuum tībb

1				_
per 1 fb ⁻¹	signal	t̄tZ	tītbb	$t\bar{t}$ +jets
events after acceptance	24.1	6.9	191	4160
events with one top tag	10.2	2.9	70.4	1457
events with $m_{bb} = 110 - 130 \text{ GeV}$	2.9	0.44	12.6	116
corresponding to subjet pairings	3.2	0.47	13.8	121
subjet pairings two b tags	1.0	0.08	2.3	1.4
including a third b tag	0.48	0.03	1.09	0.06
	•			

Tilman Plehn

Decays to bottoms

 $t\bar{t}H$ production

. . . .

Analysis errors

Higas coupling

Higgs hypothes

Associated top-Higgs production

Long death of $t \bar{t} H, H o b \bar{b}$ [Cammin & Schumacher, CMS-TDR and Atlas-CSC worse]

- trigger: $t \rightarrow bW^+ \rightarrow b\ell^+\nu$

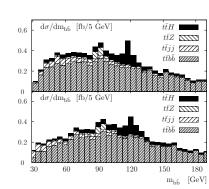
reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$

+1 h h + 1 + +

- continuum background $t \bar{t} b \bar{b}, t \bar{t} j j$ [now to NLO]

- not a chance:

1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2 $j \ell \nu$


2- kinematics: peak-on-peak

3– systematics: $S/B \sim 1/9$ [S/ \sqrt{B} irrelevant]

New analysis

- tagged (boosted) top and Higgs trigger on lepton
- add'l continuum b tag
- side bin in continuum $t\bar{t}b\bar{b}$

m_H	S	S/B	S/\sqrt{B}_{100}
115	57	1/2.1	5.2 (5.7)
120	48	1/2.4	4.5 (5.1)
130	29	1/3.6	2.9 (3.0)

Tilman Plehn

_

 $t\bar{t}H$ production

i nggo iii odood

Analysis error

Higgs operator

Higgs coupling

Higgs hypothese

Higgs and top tagging

Higgs tag for busy QCD environment [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J=p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs $m_{bb}^{\rm filt}$ no mass constraint side bin QCD rejection 10^{-5}
- jets everywhere decay plus one add'l jet at R_{filt} ~ R_{jj}/2 reconstruct masses w/ QCD jet

Tilman Plehn

cave to hottome

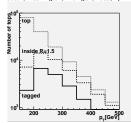
$t\bar{t}H$ production

Analysis orror

Allalysis ellois

Higas couplings

Higgs hypothese


Higgs and top tagging

Higgs tag for busy QCD environment [TP, Salam, Spannowsky]

- uncluster one-by-one: $j \rightarrow j_1 + j_2$ 1- unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2- soft $m_{j_1} < 30$ GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J=p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs $m_{bb}^{\rm filt}$ no mass constraint side bin QCD rejection 10^{-5}
- jets everywhere decay plus one add'l jet at R_{filt} ~ R_{jj}/2 reconstruct masses w/ QCD jet

Standard Model top tag [TP, Salam, Spannowsky, Takeuchi]

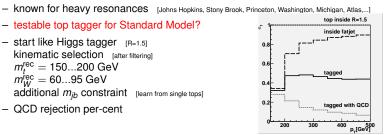
- known for heavy resonances [Johns Hopkins, Stony Brook, Princeton, Washington, Michigan, Atlas,...]
- testable top tagger for Standard Model?
- start like Higgs tagger [R=1.5] kinematic selection [after filtering] $m_t^{\rm rec} = 150...200~{\rm GeV}$ $m_W^{\rm rec} = 60...95~{\rm GeV}$ additional m_{lb} constraint [learn from single tops]
- QCD rejection per-cent

Movina Higas

Tilman Plehn

Decays to bottoms

ttH production


Higgs and top tagging

Higgs tag for busy QCD environment [TP, Salam, Spannowsky]

- uncluster one-by-one: $i \rightarrow i_1 + i_2$ 1– unbalanced $m_{j_1} > 0.8 m_j$ means QCD; discard j_2 2– soft m_{i_1} < 30 GeV means QCD; keep j_1
- double b tag [possibly add balance criterion] three leading $J = p_{T,1}p_{T,2}(\Delta R_{12})^4$ vs m_{bb}^{filt} no mass constraint — side bin QCD rejection 10⁻⁵
- jets everywhere decay plus one add'l jet at $R_{\rm filt} \sim R_{ii}/2$ reconstruct masses w/ QCD jet

Standard Model top tag [TP, Salam, Spannowsky, Takeuchi]

- testable top tagger for Standard Model?
- start like Higgs tagger [R=1.5] kinematic selection [after filtering] $m_t^{\rm rec} = 150...200 \, {\rm GeV}$ $m_{W}^{\text{rec}} = 60...95 \text{ GeV}$ additional m_{ib} constraint [learn from single tops]
- QCD rejection per-cent

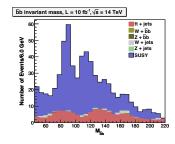
Tilman Plehn

Lecays to bottom

Higgs in cascades

Analysis errors

Higgs couplings


i nggo ooapiingo

Higgs hypotheses

Higgs in SUSY cascades

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- Higgs tag over the remaining event
- side bin analysis in m_{bb}
- more to follow...

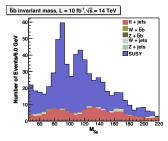
Tilman Plehn

Decays to bottoms

Higgs in cascades

Analysis error

I linear annual


Higgs couplings

Higgs hypothes

Higgs in SUSY cascades

Higgs in cascade decays [Kribs, Martin, Roy, Spannowsky]

- idea: find Higgs in cascade decays [Cambridge]
- BSM sample after missing energy or hard γ cut
- Higgs tag over the remaining event
- side bin analysis in m_{bb}
- more to follow...

Fat jets — Aspirin of LHC phenomenology

- VH: curing QCD backgrounds
- $t\bar{t}H$: curing combinatorics
- SUSY: curing lack of strategie
- heavy resonances: curing calorimeter resolution
- try using it against your headache...

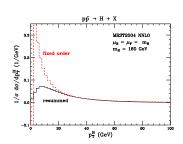
Tilman Plehn

Decays to bottom

Higgs in cascades

Analysis errors

Higgs operators


Higgs coupling

Higgs hypothese

Analysis errors

Worries about $H o \gamma \gamma$ etc [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov, Petriello]

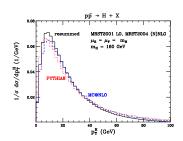
- used to be easy: double side-bin analysis
- learning from Tevatron $H\to WW$: $p_{T,H},\,\phi_{\ell\ell}$ and $n_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ
- NN and theory uncertainties? sensitive to p_T resummation tricky sensitive to first jet challenging sensitive to n_{jets} nightmare

Tilman Plehn

Decays to bottom

Higgs in cascades

Analysis errors


Higgs coupling

Higgs bypotho

Analysis errors

Worries about $H o \gamma \gamma$ etc [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov, Petriello]

- used to be easy: double side-bin analysis
- learning from Tevatron $H\to WW$: $p_{T,H},\,\phi_{\ell\ell}$ and $n_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ
- NN and theory uncertainties? sensitive to p_T resummation tricky sensitive to first jet challenging sensitive to n_{jets} nightmare

Tilman Plehn

Decays to bottoms $t\bar{t}H$ production

Higgs in cascade

Analysis errors

Higgs coupling

Higgs hypothese

Analysis errors

Worries about $H o \gamma \gamma$ etc [Anastasiou, Dissertori, Grazzini, Stockli, Webber; Anastasiou, Melnikov, Petriello]

- used to be easy: double side-bin analysis
- learning from Tevatron $H\to WW$: $p_{T,H},\,\phi_{\ell\ell}$ and $n_{\rm jets}$ in NN combine 'slices' of side-bins
- typical tool to improve 3σ to 5σ
- NN and theory uncertainties?
 sensitive to p_T resummation tricky
 sensitive to first jet challenging
 sensitive to n_{jets} nightmare
- combination of scale uncertainties [Tevatron, improvable with MCFM]

$$\frac{\Delta N}{N} = 60\% \cdot \binom{+5\%}{-9\%} + 29\% \cdot \binom{+24\%}{-23\%} + 11\% \cdot \binom{+91\%}{-44\%} = \binom{+20.0\%}{-16.9\%}$$

- high stat'l significance at high p_T increasing theory error at high p_T no higher-order predictions for exclusive n_{jets} dangerously small individual S/B
- advanced analyses finally getting me scared...

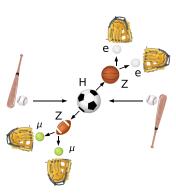
Tilman Plehn

Decays to bottoms

ttH production

Higgs in casca

Higgs operators


Higgs coupling

Higgs hypothese

Higgs operator basis

Spin and CP of $X o ZZ o ee\mu\mu$

- -H
 ightarrow ZZ useful for $m_H \gtrsim 200$ GeV and low luminosity good S/B in golden channel legendary angle between decay planes classical [Nelson] including complete set of angles next step
- spin-0: $g^{\mu\nu}$ or $g^{\mu\nu} p_1^{\mu} p_2^{\nu}/(p_1 p_2)$ or $\epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$ [Hagiwara, Szalapski, Zeppenfeld] spin-1: vector vs axial-vector spin-2: big mess [WBF: Hagiwara, Kanzaki, Li, Mawatari]
- -3σ distinction with $20\cdots 100$ events [de Rujula, Lykken, Pierini, Rogan, Spiropulu]
- ⇒ reconstruct Higgs operator basis

Tilman Plehn

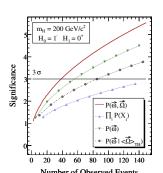
ecavs to botto

tTH production

tti i production

Andry 515 Ciro

Higgs operators


Higgs couplings

Higgs hypothese

Higgs operator basis

Spin and CP of $X o ZZ o ee\mu\mu$

- -H
 ightarrow ZZ useful for $m_H \gtrsim 200$ GeV and low luminosity good S/B in golden channel legendary angle between decay planes classical [Nelson] including complete set of angles next step
- spin-0: $g^{\mu\nu}$ or $g^{\mu\nu} p_1^{\mu} p_2^{\nu} / (p_1 p_2)$ or $\epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$ [Hagiwara, Szalapski, Zeppenfeld] spin-1: vector vs axial-vector spin-2: big mess [WBF: Hagiwara, Kanzaki, Li, Mawatari]
- -3σ distinction with $20\cdots 100$ events [de Rujula, Lykken, Pierini, Rogan, Spiropulu]
- ⇒ reconstruct Higgs operator basis

Tilman Plehn

Decays to bottoms

 $t\bar{t}H$ production

Higgs in cascade

Higgs operators

Higgs coupling

Higgs hypothese

Higgs operator basis

Spin and CP of $X \to ZZ \to ee\mu\mu$

- -H
 ightarrow ZZ useful for $m_H \gtrsim 200$ GeV and low luminosity good S/B in golden channel legendary angle between decay planes classical [Nelson] including complete set of angles next step
- spin-0: $g^{\mu\nu}$ or $g^{\mu\nu} p_1^{\mu} p_2^{\nu}/(p_1 p_2)$ or $\epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$ [Hagiwara, Szalapski, Zeppenfeld] spin-1: vector vs axial-vector spin-2: big mess [WBF: Hagiwara, Kanzaki, Li, Mawatari]
- -3σ distinction with $20\cdots 100$ events [de Rujula, Lykken, Pierini, Rogan, Spiropulu]
- similar likelihood analysis, also CMS+theory [Gritsan, Melnikov,...]

	0-	1+	1-	2 ⁺
0+	0.0/0.0/3.9/4.1/4.1	0.8/1.0/1.8/1.9/2.3	0.9/1.0/2.5/2.6/2.6	0.8/0.9/2.4/2.5/2.8
0-		0.8/1.2/2.8/3.0/3.1	0.9/1.0/2.5/2.8/3.0	0.8/0.8/1.7/2.0/2.4
1+			0.0/1.1/1.1/1.2/2.2	0.1/1.2/1.3/1.4/2.6
1-				0.1/0.1/1.3/1.5/1.8

- example for Higgs analyses with low-ish luminosity
- more on D5 operators in Ian Low's talk [watch out for their Z_{γ} sales pitch]
- extended to WBF channels...
- ⇒ reconstruct Higgs operator basis

Movina Higas

Tilman Plehn

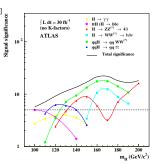
Higgs couplings

Higgs coupling analysis

Higgs-sector analysis [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- next, prefactors

- light Higgs: 10 main channels ($\sigma \times BR$)


- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$

WBF : $H \rightarrow ZZ$, WW, $\gamma\gamma$, $\tau\tau$

 $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

 $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$

- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus m_H]

Tilman Plehn

Decays to bottoms

ttH production

niggs iii casca

Analysis errors

Higgs couplings

r nggo ooupmige

Higgs hypothese

Errors

Sources of uncertainty

 statistical error: Poisson systematic error: Gaussian, if measured theory error: not Gaussian

LHC rate 10% off: no problem
 LHC rate 30% off: no problem

LHC rate 300% off: Standard Model wrong

means theory likelihood flat centrally and zero far away

profile likelihood construction: RFit [CKMFitter]

$$\begin{split} -2\log\mathcal{L} &= \chi^2 = \vec{\chi}_d^T \ C^{-1} \ \vec{\chi}_d \\ \chi_{d,i} &= \begin{cases} 0 & |d_i - \vec{d}_i| < \sigma_i^{\text{(theo)}} \\ \frac{|d_i - \vec{d}_i| - \sigma_i^{\text{(theo)}}}{\sigma_i^{\text{(exp)}}} & |d_i - \vec{d}_i| > \sigma_i^{\text{(theo)}} \end{cases}, \end{aligned}$$

 measuring ratios [Zeppenfeld,...; Low, Lykken] useless if statistics dominated theory errors — same initial states systematic errors — same final states

Tilman Plehn

Decays to botto

 $t\bar{t}H$ production

riiggs iii cascai

Analysis errors

Higgs operator

Higgs couplings

Higgs hypothese

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings varied around SM values $g_{HXX}=g_{HXX}^{\rm SM}$ (1 + δ_{HXX}) $\delta_{HXX}\sim -2$ means sign flip $[g_{HWW}>0$ fixed]
- need assumption about loop-induced couplings $g_{ggH}, g_{\gamma\gamma H}$
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]

luminosity measurement	5 %
detector efficiency	2 %
lepton reconstruction efficiency	2 %
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5 %
b-tagging efficiency	3 %
τ -tagging efficiency (hadronic decay)	3 %
lepton isolation efficiency ($H \rightarrow 4\ell$)	3 %

σ (gluon fusion)	13 %
σ (weak boson fusion)	7 %
σ (VH-associated)	7 %
σ ($t\bar{t}$ -associated)	13 %

Tilman Plehn

Decays to bottoms

Higgs couplings

Higgs couplings

SFitter analysis [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings varied around SM values $g_{HXX} = g_{HXX}^{SM} (1 + \delta_{HXX})$ $\delta_{HXX} \sim -2$ means sign flip $_{[g_{HWW}~>~0~{
 m fixed}]}$
- need assumption about loop-induced couplings $g_{qqH}, g_{\gamma\gamma H}$
- likelihood map and local errors from SFitter
- experimental/theory errors on signal and backgrounds [do not ask theorists!]
- error bars for Standard Model hypothesis [smeared data point, 30fb-1]

coupling	without eff. couplings			including eff. couplings		
	σ_{symm}	σ_{neg}	σ_{pos}	σ_{symm}	σ_{neg}	σ_{pos}
δ_{WWH}	± 0.23	- 0.21	+0.26	± 0.24	- 0.21	+0.27
δ_{ZZH}	± 0.50	-0.74	+0.30	± 0.44	-0.65	+0.24
$\delta_{t\bar{t}H}$	± 0.41	-0.37	+0.45	± 0.53	-0.65	+0.43
$\delta_{b\bar{b}H}$	± 0.45	-0.33	+0.56	± 0.44	-0.30	+0.59
$\delta_{ au au H}$	± 0.33	-0.21	+0.46	± 0.31	-0.19	+0.46
$\delta_{\gamma\gamma H}$	_	_	_	± 0.31	-0.30	+0.33
δ_{qqH}	_	_	_	± 0.61	-0.59	+0.62
m_H	± 0.26	-0.26	+0.26	± 0.25	-0.26	+0.25
m_b	± 0.071	-0.071	+0.071	± 0.071	-0.071	+0.072
m_t	±1.00	– 1.03	+0.98	± 0.99	– 1.00	+0.98

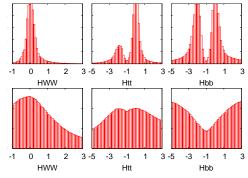
Tilman Plehn

Decays to bottom

 $t\bar{t}H$ production Higgs in cascades

Analysis errors

Analysis errors

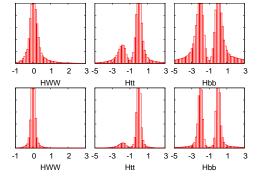

Higgs couplings

Higgs hypotheses

Higgs couplings

One-dimensional distributions to check....

1- noisy environment preferring profile likelihoods $[no\ effective\ couplings,\ 30\ fb^{-1}]$


Tilman Plehn

Higgs couplings

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2— higher luminosity quantitatively different $[no\ effective\ couplings,\ 30\ vs\ 300\ fb^{-1}]$

Tilman Plehn

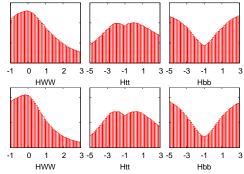
711 and all and

 $t\bar{t}H$ production

Analysis errors

Analysis errors

riiggo oporatori


Higgs couplings

Higgs nypotneses

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3– but not saving Bayesian statistics [no effective couplings, 300 ${\rm fb}^{-1}$]

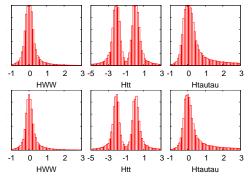
Moving Higgs
Tilman Plehn

ttH production

tti production

Analysis errors

Higgs operators


Higgs couplings

Higgs hypothese:

Higgs couplings

One-dimensional distributions to check....

- 1- noisy environment preferring profile likelihoods [no effective couplings, 30 fb⁻¹]
- 2- higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb⁻¹]
- 3— but not saving Bayesian statistics [no effective couplings, 300 ${
 m fb}^{-1}$]
- 4— theory errors not dominant for 30 ${\rm fb^{-1}}$ [with effective couplings, 30 ${\rm fb^{-1}}$]

 \Rightarrow profile likelihood promising for 30 fb⁻¹, errors a mess

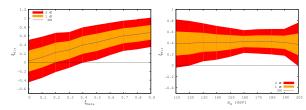
Tilman Plehn

ecays to bottom

 $t\bar{t}H$ production

Higgs in cascad

Analysis errors


Higgs coupling

Higgs hypotheses

Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner]

- looking like fundamental Higgs
- 1– all couplings scaled $g o g \sqrt{1-\xi}$
- one-parameter fit in SFitter [SFitter + Bock, P Zerwas]
- 30 fb $^{-1}$ and 120 GeV Higgs: $\Delta g/g \sim$ 10% best around $m_H \sim$ 160 GeV: $\Delta g/g \sim$ 5%

Tilman Plehn

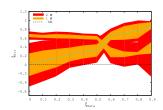
Decays to bottoms

 $t\bar{t}H$ production

Higgs in cascade

Analysis errors

Higgs coupling


...

Higgs hypotheses

Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner]

- looking like fundamental Higgs
- 1– all couplings scaled $g o g \sqrt{1-\xi}$
- one-parameter fit in SFitter [SFitter + Bock, P Zerwas]
- 30 fb $^{-1}$ and 120 GeV Higgs: $\Delta g/g \sim$ 10% best around $m_H \sim$ 160 GeV: $\Delta g/g \sim$ 5%
- 2– gauge couplings $g \to g\sqrt{1-\xi}$ Yukawas $g \to g(1-2\xi)/\sqrt{1-\xi}$
- sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Tilman Plehn

=

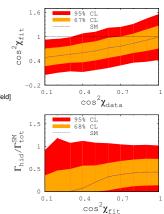
 $t\bar{t}H$ production

Analysis errors

115----

Higgs couplings

Higgs hypotheses


Refining Higgs hypotheses

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner]

- looking like fundamental Higgs
- 1– all couplings scaled $g o g \sqrt{1-\xi}$
- one-parameter fit in SFitter [SFitter + Bock, P Zerwas]
- 30 fb $^{-1}$ and 120 GeV Higgs: $\Delta g/g \sim$ 10% best around $m_H \sim$ 160 GeV: $\Delta g/g \sim$ 5%
- 2- gauge couplings $g \to g \sqrt{1-\xi}$ Yukawas $g \to g(1-2\xi)/\sqrt{1-\xi}$
- sign change of Yukawas, $g_{\gamma\gamma H}$ correlated

Higgs portal

- universal scaling $\sqrt{1-\xi} \equiv \cos\chi$
- invisible Higgs decay measurable [Eboli & Zeppenfeld] two-parameter fit, project out Γ_{hid} or $\cos\chi$
- to appear soon...
- \Rightarrow hypotheses testable with 30 fb⁻¹

Tilman Plehn

Decays to bottor

 $t\bar{t}H$ production

Analysis errors

Analysis errors

Higgs coupling

Higgs hypotheses

Outlook

Higgs at LHC a restless guy

- decay to bottoms running at us
- analysis techniques running away
- operator analysis moving towards 30 ${\rm fb}^{-1}$
- parameter analysis moving towards 30 fb⁻¹
- not early running, but exciting times

Moving Higgs Tilman Plehn Decays to bottoms $t\bar{t}H$ production Higgs in cascades Analysis errors Higgs operators Higgs couplings Higgs hypotheses